Learning of Fir and Arx Neural Networks with Empirical Risk Minimization Algorithm
نویسنده
چکیده
The probably approximately correct (PAC) learning theory was originally introduced to address static models where the input data were assumed to be i.i.d. In many real applications; however, datasets and systems to be modeled are often dynamic. This encourages the efforts to extend the conventional PAC learning theory to address typical dynamic models such as finite impulse response (FIR) and auto regressive exogenous (ARX) models. This paper presents such extensions for the PAC learning theory and uses the resulting theory to evaluate the learning properties of some families of FIR and ARX neural networks. For ARX models, besides the learning properties of the neural models, stochastic stability of the models are also evaluated.
منابع مشابه
An Efficient Method for Selecting the Optimal Structure of a Fuzzy Neural Network Architecture
The fusion of artificial neural networks with soft computing enables to construct learning machines that are superior compared to classical artificial neural networks, because knowledge can be extracted and explained in the form of simple rules. An efficient method for selecting the optimal structure of a fuzzy neural network architecture is developed. The Vapnik Chervonenkis VC dimension is in...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملBoosted ARTMAP: Modifications to fuzzy ARTMAP motivated by boosting theory
In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such le...
متن کاملPrediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models
In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...
متن کاملApplication of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...
متن کامل